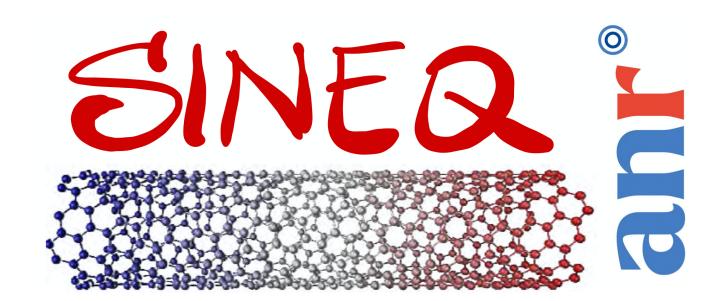


STICKY COUPLING AS A CONTROL VARIATE FOR SENSITIVITY ANALYSIS

Shiva Darshan^{1,2}, Andreas Eberle³, Gabriel Stoltz^{1,2}

CERMICS École des Ponts¹, MATHERIALS Team Inria Paris², University of Bonn³



Introduction

Motivation: Computing transport coefficients (mobility, thermal conductivity, shear viscosity) in statistical physics

Goal: Reduce the variance of the estimator of sensitivity/transport coefficient.

DYNAMICS

Consider the following family of SDEs with values in \mathbb{R}^d and additive noise:

$$dX_t^{\eta} = \left(b\left(X_t^{\eta}\right) + \eta F\left(X_t^{\eta}\right)\right) dt + \sqrt{\frac{2}{\beta}} dW_t,$$

where $b, F : \mathbb{R}^d \to \mathbb{R}^d$ are smooth, F bounded, $\beta > 0$, and $\eta \in \mathbb{R}$. We assume that for each η it admits a unique invariant measure ν_{η} .

Contractivity Assumption

We assume that there exists m > 0 and $M \ge 0$ such that

$$\langle x - y, b(x) - b(y) \rangle \le -m |x - y|^2$$
, if $|x - y| \ge M$.

Transport coefficients

Estimator of linear response (observable R average 0 with respect to ν_0)

$$\widehat{\Phi}_{\eta,t} = \frac{1}{\eta t} \int_0^t R(X_t^{\eta}) \, ds \xrightarrow[t \to +\infty]{\text{a.s.}} \alpha_{R,\eta} := \frac{1}{\eta} \int_{\mathbb{R}^d} R \, d\nu_{\eta} = \alpha_R + \mathcal{O}(\eta)$$

Asymptotic variance $\lim_{t\to\infty} t \operatorname{Var}\left(\widehat{\Phi}_{\eta,t}\right) = \operatorname{O}(\eta^{-2})$

Coupling Based Estimator

Idea: Use the reference dynamics to reduce the variance and bias of the estimator:

$$\widehat{\Psi}_{\eta,t} = \frac{1}{\eta t} \int_0^t \left[R\left(X_s^{\eta}\right) - R\left(Y_s^{0}\right) \right] ds,$$

with $(X_t^{\eta}, Y_t^{\eta})_{t\geq 0}$ the solution of following system with coupled driving noises $(W_t, \widetilde{W}_t)_{t\geq 0}$

$$dX_t^{\eta} = (b(X_t^{\eta}) + \eta F(X_t^{\eta})) dt + \sqrt{\frac{2}{\beta}} dW_t,$$

$$dY_t^0 = b(Y_t^0) dt + \sqrt{\frac{2}{\beta}} d\widetilde{W}_t.$$

Synchronous Coupling

Use the same Brownian motion to drive the two trajectories, i.e $W=\widetilde{W}$. In this case the difference process is C^1 :

$$d\left(X_{t}^{\eta}-Y_{t}^{0}\right)=\left(b\left(X_{t}^{\eta}\right)+\eta F\left(X_{t}^{\eta}\right)-b\left(Y_{t}^{0}\right)\right)dt.$$

If the drift b is contractive everywhere, i.e. there exists M=0, then

$$|X_t^{\eta} - Y_t^0| \le \left(|X_0^{\eta} - Y_0^0| - \frac{\eta \|F\|_{\infty}}{2m} \right) e^{-mt} + \frac{\eta \|F\|}{2m}.$$

Thus, if $X_0^{\eta} = Y_0^0$ then $\mathbb{E}\left[\left|\widehat{\Psi}_{n,t}^{\text{sync}}\right|^p\right]$ is uniformly bounded as $\eta \to 0$.

STICKY COUPLING

If the drift is *not* contractive everywhere, synchronous coupling can fail spectacularly because the drift does not necessarily bring together the trajectories.

Idea: Use the noise to bring the trajectories together.

Constructed in [4], uses reflection coupling to bring the trajectories together and is stick in the sense that $|X_t^{\eta} - Y_t^0| \le r_t^{\eta}$ a.s where $(r_t^{\eta})_{t>0}$ is diffusion on $[0, \infty)$ with a sticky boundary condition at zero

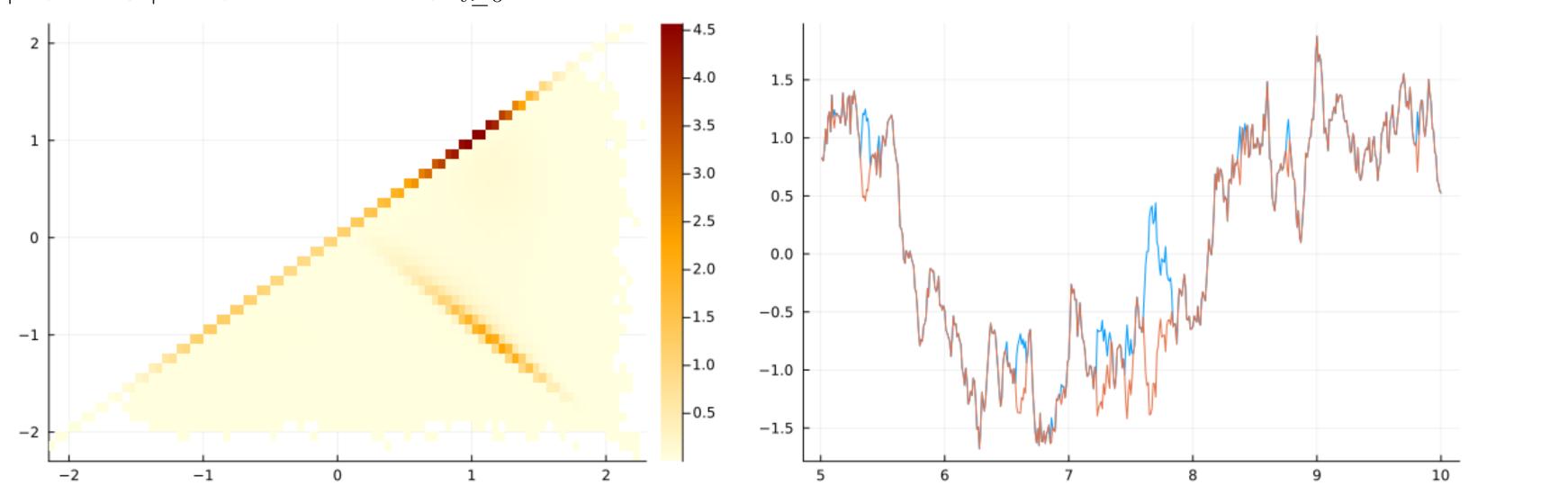


Figure: Sticky coupling of a 1D particle in a double well potential perturbed by a constant force to the right, i.e. $b(x) = -4x(x^2 - 1)$ and $\eta F(x) = 1$. Left: histogram of coupled process; Right: segment of trajectory of coupled process

Problem: Sticky coupled process is highly degenerate. Zero set of r^{η} is a fat random Cantor set. Existence of invariant measure and its ergodic properties are unclear.

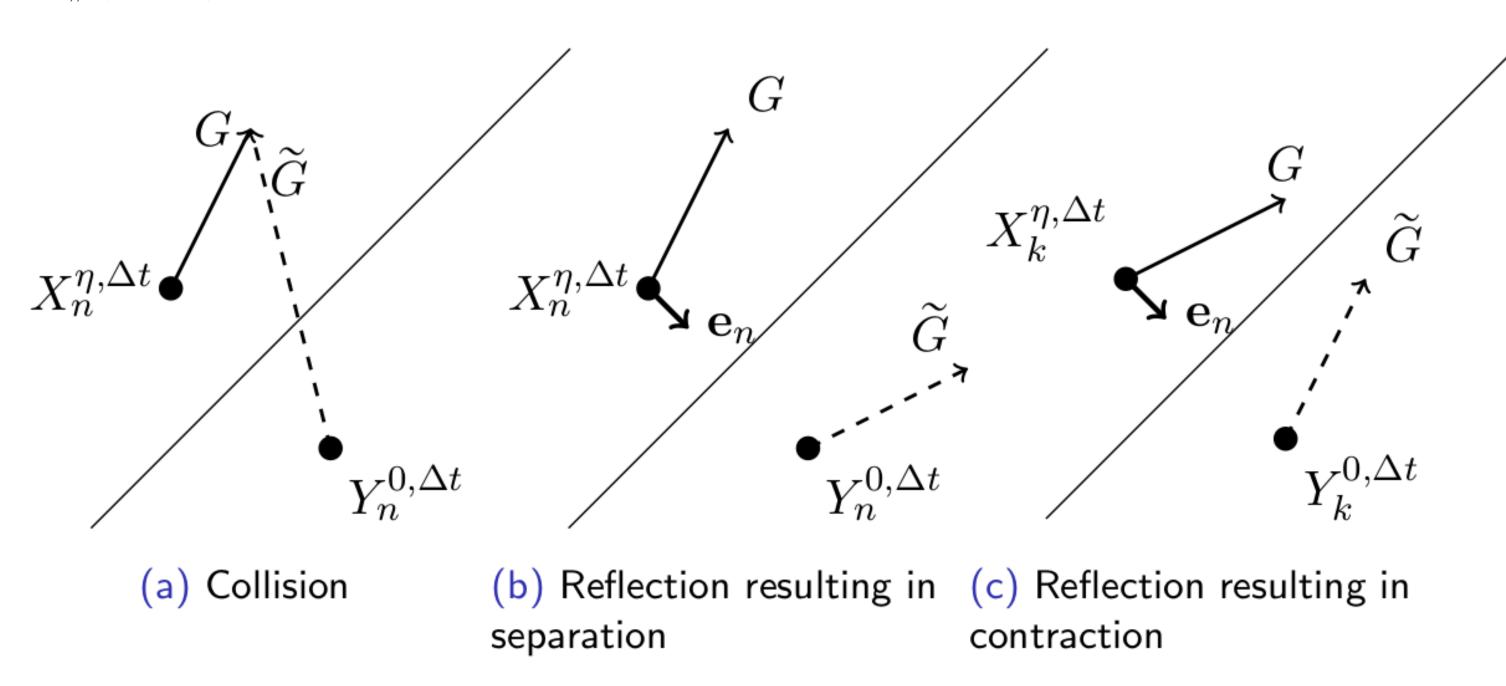
DISCRETE STICKY COUPLING

Work around: Use discrete-time sticky coupling [2]: $G_{n+1} \sim \mathcal{N}(0, \mathrm{Id})$ and $U_{n+1} \sim \mathrm{Unif}([0, 1])$

$$X_{n+1}^{\eta,\Delta t} = X_n^{\eta,\Delta t} + \Delta t \left[b \left(X_n^{\eta,\Delta t} \right) + \eta F \left(X_n^{\eta,\Delta t} \right) \right] + \sqrt{\frac{2\Delta t}{\beta}} G_{n+1},$$

$$Y_{n+1}^{0,\Delta t} = \begin{cases} X_{n+1}^{\eta,\Delta t}, & \text{if } U_{n+1} \leq p_{\Delta t,\beta} \left(X_n^{\eta,\Delta t}, Y_n^{0,\Delta t}, G_{n+1} \right), \\ Y_n^{0,\Delta t} + \Delta t b \left(Y_n^{0,\Delta t} \right) + \sqrt{\frac{2\Delta t}{\beta}} \left[\text{Id} - 2\mathbf{e}_n \mathbf{e}_n^T \right] G_{n+1} & \text{otherwise}, \end{cases}$$

with $p_{\Delta t,\beta}(x,y,g)$ being the overlap of the two trajectories marginal transition densities at the n-th step.



The discrete-time sticky coupled process admits a unique invariant probability measure, $\mu_{\eta,\Delta t}$ and is geometrically ergodic with respect to this measure. Furthermore, we can control the mass $\mu_{\eta,\Delta t}$ puts off the diagonal:

$$\int_{\mathbb{R}^d \times \mathbb{R}^d} \mathbf{1}_{\{x \neq y\}} e^{-c(|x|^2 + |y|^2)} \mu_{\eta, \Delta t} (dx dy) \leq C \eta \left(\nu_{\eta, \Delta t} \left(e^{-c|x|^2} \right) + \nu_{0, \Delta t} \left(e^{-c|x|^2} \right) \right).$$

DISCRETE-TIME ESTIMATOR

We introduce the following discrete-time estimator of $\alpha_{R,\eta}$

$$\widehat{\Psi}_{\eta,N}^{\text{sticky},\Delta t} = \frac{1}{\eta N} \sum_{n=0}^{N-1} \left[R\left(X_n^{\eta,\Delta t}\right) - R\left(Y_n^{0,\Delta t}\right) \right]$$

Theorem 1 Let $\eta_* > 0$ and R such that $\nu_0(R) = 0$. Assume that $X^{\eta,\Delta t}$ and $Y^{0,\Delta t}$ have the same initial value. Under the contractivity assumption and some technical assumptions, there exists $K_1, K_2 > 0$ such that

$$\forall \eta \in [-\eta_*, \eta_*], \quad \lim_{N \to \infty} N \operatorname{Var}\left(\widehat{\Psi}_{\eta, N}^{\operatorname{sticky}, \Delta t}\right) \le \frac{K_1}{\eta},$$

anc

$$\left| \mathbb{E} \left[\widehat{\Psi}_{\eta,N}^{\Delta t} \right] - \alpha_{R,\eta} \right| \le K_2 \left(\frac{1}{\Delta t N} + \Delta t \right).$$

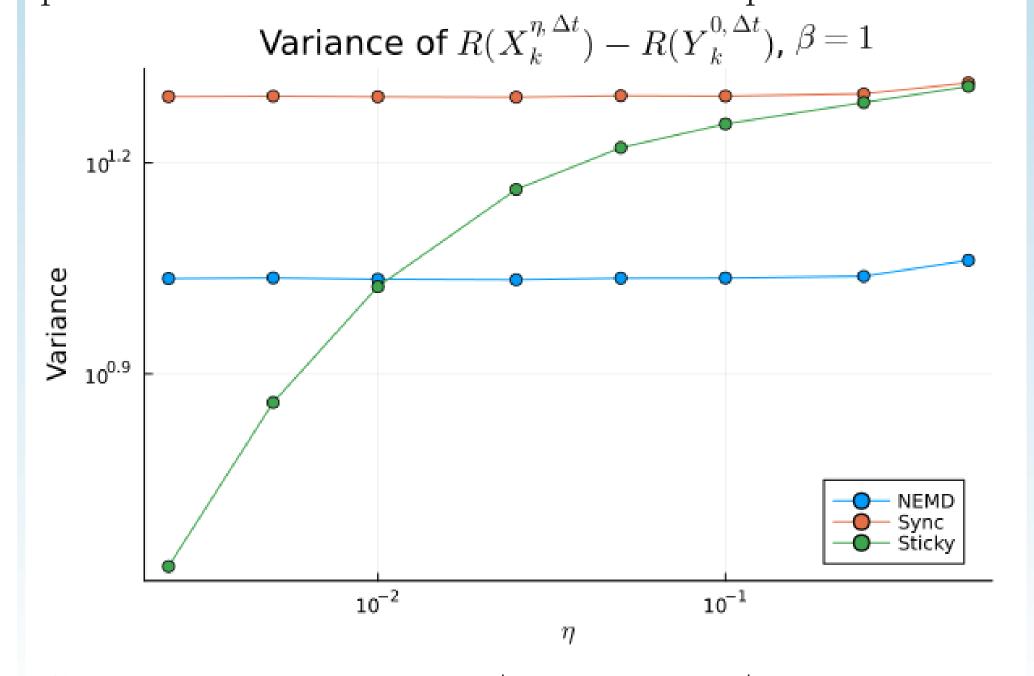
NUMERICAL ILLUSTRATION

Example: Lennard-Jones Cluster in 2D:

The drift is given by $b(x) = -\nabla(U_1 + U_2)$ with interaction part U_1

$$U_1(x) = \sum_{i \ge i} \left[\left(\frac{1}{|r_{ij}|} \right)^{12} - 2 \left(\frac{1}{|r_{ij}|} \right)^6 \right],$$

with $r_{ij} = |x^i - x^j|$ if i < j and $r_{ii} = |x^i|$. And U_2 a confinig potential For F we use sine shear on each particle.



Code available: github.com/shiva-darshan/sticky_coupling

REFERENCES

- [1] N. Bou-Rabee, A. Eberle and R. Zimmer Coupling and Convergence for Hamiltonian Monte Carlo 2020
- [2] A. Durmus, A. Eberle, A. Enfroy, A. Guillin, and P. Monmarché Discrete sticky couplings of functional autoregressive processes 2021
- [3] A. Eberle, A. Guillin, R. Zimmer Couplings and quantitative contraction rates for Langevin dynamics 2019
- 4] A. Eberle and R. Zimmer Sticky couplings of multidimensional diffusions with different drifts 2019
- [5] Lelièvre, T. and Stoltz, G. Partial differential equations and stochastic methods in molecular dynamics. *Acta Numerica*, 2016.