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Linear response for stationary
perturbed dynamics
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Transport Coefficients, Kézako1?

F

F

F

F

What is the first-order response of a system to an external forcing?

1 French slang for ”what’s that”
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Transport Coefficients, Kézako?

Our setup:

dXη
t “ pb pXη

t q ` ηF pXη
t qq dt `

c

2

β
dWt, (1)

with invariant probability measure νη and where b, F : Rd Ñ Rd, β ą 0,
and η P R.

Transport Coefficients quantify the first order response of the invariant
probability measure with respect to the perturbation

αR :“
d

dη
νηpRq

ˇ

ˇ

ˇ

η“0
“ lim

ηÑ0

νηpRq ´ ν0pRq

η
(2)
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Some Assumptions

Technical Assumptions

F, b,R P S , i.e. smooth, grow at most polynomially, and have
derivatives that grow at most polynomially

F, b Lipschitz

F bounded

Important Assumption

Strong Contractivity at Infinity
There exists M ě 0 and m ą 0 such that

xx ´ y, bpxq ´ bpyqy ď ´m |x ´ y|
2 , if |x ´ y| ě M.

Example if bpxq “ ´∇ pV1pxq ` V2pxqq, where V1 is a confining potential
and V2 is a compactly supported.

Under these assumptions, a unique invariant probability measure νη with
smooth density w.r.t to Lebesgue exists of any η P R.
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Estimating transport coefficients

Assume from here on that the observable R is such that ν0pRq “ 0
The transport coefficient αR is well-defined and

αR “ lim
ηÑ0

νηpRq

η
“

ż

Rd

R f dν0, f “ ´pL˚
0q´1

rL˚1,

Estimator of linear response:

pΦη,t “
1

ηt

ż t

0
RpXη

t q ds
a.s.

ÝÝÝÝÑ
tÑ`8

αR,η :“
1

η

ż

Rd

Rdνη “ αR ` Opηq

Sources of error:

Statistical error with asymptotic variance Opη´2q

Bias from finite integration time

Timestep discretization bias

Bias Opηq due to η ‰ 0
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Couplings Based Estimators
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Couplings Based Estimator

Definition

A coupling of two random variables X and Y is a couple
´

rX, rY
¯

of

random variables such that rX
Law
“ X and rY

Law
“ Y

Idea: Use the reference dynamics to reduce the variance and bias of the
estimator:

pΨη,t “
1

ηt

ż t

0

“

R pXη
s q ´ R

`

Y 0
s

˘‰

ds, (3)

with pXη
t , Y

η
t qtě0 the solution of

dXη
t “ pb pXη

t q ` ηF pXη
t qq dt `

c

2

β
dWt,

dY 0
t “ b

`

Y 0
t

˘

dt `

c

2

β
dĂWt,

where the driving noises
´

Wt,ĂWt

¯

tě0
are cleverly coupled.
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Synchronous Coupling

By choosing W “ ĂW , we synchronously couple the Xη and Y 0, giving

d
`

Xη
t ´ Y 0

t

˘

“
`

b pXη
t q ´ b

`

Y 0
t

˘

` ηF pXη
t q
˘

dt.

If the drift is strongly contractive everywhere, i.e.

xx ´ y, bpxq ´ bpyqy ď ´m |x ´ y|
2 , @x, y P Rd, (4)

then we have pointwise control over the distance between the coupled
trajectories:

ˇ

ˇXη
t ´ Y 0

t

ˇ

ˇ ď

ˆ

ˇ

ˇXη
0 ´ Y 0

0

ˇ

ˇ ´
η }F }8

2m

˙

e´mt `
η }F }

2m
.

As a consequence,

E
”
ˇ

ˇ

ˇ

pΨsync
η,t

ˇ

ˇ

ˇ

pı

ď C

˜

ˇ

ˇXη
0 ´ Y 0

0

ˇ

ˇ

p

ηp
e´pmt `

´

1 ´ e´pλt
¯p

ˆ

η }F }

2m

˙p
¸

,

and a fortiori bounded variance and bias as η Ó 0 if
ˇ

ˇXη
0 ´ Y 0

0

ˇ

ˇ

p
“ O pηpq.
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Synchronous Coupling

In fact, as long as we have sufficient contractivity, say due to sufficiently
high temperature2 or in the underdamped case3, we can control the
moments of the estimator as

E
”ˇ

ˇ

ˇ

pΨsync
η,t

ˇ

ˇ

ˇ

pı

ď C

˜

ˇ

ˇXη
0 ´ Y 0

0

ˇ

ˇ

p

ηp
e´pmt `

´

1 ´ e´pλt
¯p

ˆ

η }F }

2m

˙p
¸

,

Moral: When there is enough strong contractivity, synchronous coupling is
hard to beat.
What to do when we do not have enough strong contractivity?

2P. Monmarché (2022) Wasserstein contraction and Poincaré inequalities for elliptic
diffusions at high temperature

3P. Monmarché (2023) Almost sure contraction for diffusions on Rd. Applications to
generalized Langevin diffusions.
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Sticky Coupling

One can construct a coupling4 such that
`

Xη
t ´ Y 0

t

˘

tě0
is sticky at 0 in

the sense that its norm is controlled by a one-dimensional process prηt qtě0

that spends a positive amount of time at 0

Figure: Sticky coupling of a 1D particle in a double well potential perturbed by a
constant force to the right. Left: histogram of coupled process; Right: segment
of trajectory of coupled process

4A. Eberle, R. Zimmer (2019) Sticky couplings of multidimensional diffusions with different
drifts
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Difficulties with Continuous-Time Sticky Coupling

Non-explicit construction—constructed as the limit point of a tight
family of processes

Long-time properties of sticky coupled process are unclear. Unknown
if it is ergodic, admits a unique invariant measure, etc.

Convergence of discrete approximations also unclear

These difficulties arise because the limit object is highly degenerate. If it
satisfied an SDE, the equation would have discontinuous coefficients and
likely could not admit a strong solution.

The problem is that we have a ”sticky” diffusion in Rd
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Discrete-Time Sticky Coupling

Work instead with discrete version of sticky coupling 5. Consider the
estimator

pΨ∆t
η,N “

1

ηN

N´1
ÿ

k“0

“

R
`

Xη,∆t
n

˘

´ R
`

Y 0,∆t
n

˘‰

with
!

Xη,∆t
n , Y 0,∆t

n

)

kPN
the discrete sticky coupling of the

Euler-Maruyama discretizations of pXη
t qtě0 and

`

Y 0
˘

tě0
.

Let tGkukě1 and tUkukě1 be i.i.d sequences of Gaussian and uniform
random variables respectively.

Xη,∆t
n`1 “ Xη,∆t

n ` ∆t
“

b
`

Xη,∆t
n

˘

` ηF
`

Xη,∆t
n

˘‰

`

d

2∆t

β
Gn`1,

5A. Durmus, A. Eberle, A. Enfroy, A. Guillin, P. Monmarché (2024) Discrete sticky couplings
of functional autoregressive processes

Shiva Darshan (ENPC/Inria) Coupling Based Control Variates New York City, October 2024 14 / 30



Discrete-Time Sticky Coupling

Y 0,∆t
n`1 “

$

’

’

&

’

’

%

Xη,∆t
n`1 if p∆t,β

`

Xη,∆t
n , Y 0,∆t

n , Gn`1

˘

ě Un`1

Y 0,∆t
n ` b

`

Y 0,∆t
n

˘

∆t `

d

2∆t

β

“

Id ´ 2ene
T
n

‰

Gn`1 otherwise

G

Xη,∆t
n

rG

Y 0,∆t
n

(a) Collision

G

Xη,∆t
n en rG

Y 0,∆t
n

(b) Reflection resulting in
separation

G

Xη,∆t
k

en

rG

Y 0,∆t
k

(c) Reflection resulting in
contraction
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Discrete-Time Sticky Coupling

E px, yq “ y ´ x ` ∆t rbpyq ´ bpxq ´ ηF pxqs ,

e px, yq “

$

&

%

E px, yq

|E px, yq|
if E px, yq ‰ 0

e0 otherwise,

p∆t,β px, y, zq “ min

$

’

’

&

’

’

%

1,

φ

ˆ

b

β
2∆t |E px, yq| ´ xe px, yq , zy

˙

φ pxe px, yq , zyq

,

/

/

.

/

/

-

,
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Discrete-Time Sticky Coupling

Proposition

For ∆t sufficiently small, the discrete-time sticky coupled process
␣

Xη
k , Y

0
k

(

kPN admits a unique invariant measure, µη,∆t. Furthermore it is
geometrically ergodic wrt to this measure.

Proof : Use Hairer & Mattingly strategy6

Denote by T η,∆t the Markov kernel of the coupled process
Contractivity implies ec|x|

2

` ec|y|
2

is a Lyapunov function.
p∆t,βpx, y, zq ą 0 ùñ always strictly positive probability of returning to
the diagonal
@K ą 0 there exists ρK,∆t P p0, 1q such that

inf
maxt|x|,|y|uďK

T η,∆t ppx, yq , ¨q ě ρK,∆tξK p¨q

with ξK the uniform probability on tx “ yu X tmax t|x|, |y|u ď Ku

6M. Hairer and J. Mattingly Yet another look at Harris’s ergodic theorem for Markov chains
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Performance of the Sticky Coupling Based Estimator

The coupling based estimator improves by η´1 factor of :

Theorem

Let η‹ ą 0 and R P S such that ν0pRq “ 0. Assume that Xη and Y 0

have the same initial value. Assume above assumptions hold and ∆t small

enough, then the estimator
!

pΨ∆t
η,N

)

NPN
converges almost surely and

satisfies a CLT with asymptotic variance σ2
sticky,R,η,∆t. There exists K ą 0

such that

@η P r´η‹, η‹s ,
ˇ

ˇ

ˇ
E
”

pΨ∆t
η,N

ı

´ αR,η

ˇ

ˇ

ˇ
ď K

ˆ

1

N
` ∆t

˙

, (5)

and for any n P N there exists Kn ą 0 such that

@η P r´η‹, η‹s , σ2
sticky,R,η,∆t ď Kn

ˆ

1

η
`

∆t4n

η2

˙

. (6)
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Key Idea of Proof

Proposition

Under the same hypothesis as the theorem, there exists c ą 0 such that

ż

RdˆRd

´

ec|x|2 ` ec|y|2
¯

1tx‰yu dµη,∆t pdx dyq ď Cη
´

νη,∆t

´

ec|x|2
¯

` ν0,∆t

´

ec|y|2
¯¯

Heuristic ”proof” of proposition

ż

RdˆRd

´

ec|x|2 ` ec|y|2
¯

1tx‰yu dµη,∆t pdx dyq

ď µη,∆t ptx ‰ yuq

ż

RdˆRd

´

ec|x|2 ` ec|y|2
¯

dµη,∆t pdx dyq ,

(7)

The sticky coupled process spends an Opηq proportion of time off the
diagonal. Furthermore µη,∆t is clearly a coupling of νη,∆t and ν0,∆t.
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Numerical Illustrations
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Numerical Illustrations: Strongly Convex Potential

Consider a 2-dimensional Ornstein-Uhlenbeck process

dXη
t “ ´

„

1 ´η
0 1

ȷ

Xη
t dt `

c

2

β
dWt;

here b pxq “ ´∇U “ ´x and F pxq “ rx2 0s
T . We choose as response

function the covariance between the components. In this case, αR can be
computed analytically.

Rpxq “ x1x2, αR “
1

2β
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Numerical Illustrations: Strongly Convex Potential
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Numerical Illustrations: Strongly Convex Potential
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Numerical Illustrations: Lennard-Jones Fluid

For less trivial example, we consider an 18 particles 2-D Lennard-Jones
fluid. For x “

`

x11, x
1
2, x

2
1, x

2
2, . . . , x

18
1 , x182

˘

, the interaction is given by

U1pxq “
ÿ

iěj

«

ˆ

1

|rij |

˙12

´ 2

ˆ

1

|rij |

˙6
ff

,

with rij “ |xi ´ xj | if i ă j and rii “ |xi|. The confinement is give by

U2pxq “

18
ÿ

i“1

”

max
␣

|xi1| ´ 5, 0
(2

` max
␣

|xi2| ´ 5, 0
(2
ı

.

Thus bpxq “ ´∇U “ ´∇pU1 ` U2q. For F we use sine shear

pF pxqqi “

#

sinpπxk2{5q if i “ 2k ´ 1

0 otherwise

and we measure the mobility response

Rpxq “ F pxqT∇Upxq
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Numerical Illustrations: Lennard-Jones Fluid Sine Shear
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Numerical Illustrations: Lennard-Jones Fluid Sine Shear
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Extension to Hypoelliptic Dynamics

dqηt “ pηt dt

dpηt “ pb pqηt q ` ηF pqηt qq dt ´ γpηt dt `

c

2γ

β
dWt

(8)

One can construct a non-Markovian coupling of the Euler-Maruyamma
discretization of perturbed η ‰ 0 and reference dynamics where the noise
at n ` 1 step is used to force a collision of the positions at the n ` 2 step
and the noise at n ` 2 step is used to force a collision of the momenta at
the n ` 2 step.
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Extension to Hypoelliptic Dynamics
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Some Extensions and Perspectives

Componentwise and particle system coupling: Prefactors likely behave
badly as d Ñ 8. Idea: For particle clusters, couple each particle to
either its same number particle or nearest particle in the other cluster7

Hybrid coupling: Reflective part gives sticky coupling a long tail, while
synchronous is unbeatable when there’s contractivity. This suggests a
hybrid approach of mixing sticky and synchronous couplings.

Extension to Riemann manifolds: adapt reflection coupling part to
geometry of the manifold via Kendall-Cranston coupling 8

Extension to kinetic Langevin dynamics 9 10 11

7see works by A. Eberle, K. Schuh, R. Zimmer
8A. Eberle (2016) Reflection couplings and contraction rates for diffusions
9A. Eberle, A. Guillin, R. Zimmer (2019) Couplings and quantitative contraction rates for

Langevin dynamics
10N. Bou-Rabee, A. Eberle, R. Zimmer (2020) Coupling and Convergence for Hamiltonian

Monte Carlo
11M. Chak and P. Monmarché (2024) Reflection coupling for unadjusted generalized

Hamiltonian Monte Carlo in the nonconvex stochastic gradient case
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Numerical Illustrations: Lennard-Jones Fluid Sine Shear
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Numerical Illustrations: Lennard-Jones Fluid Sine Shear
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Numerical Illustrations: Lennard-Jones Fluid Sine Shear
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Analysis of Variance/Finite-Time Bias of Standard
Estimator

‚Statistical error dictated by Central Limit Theorem:

?
t
´

pΦη,t ´ αη

¯

law
ÝÝÝÝÑ
tÑ`8

N

˜

0,
σ2
R,η

η2

¸

, σ2
R,η “ σ2

R,0 ` Opηq

so pΦη,t “ αη ` OP

ˆ

1

η
?
t

˙

Ñ requires long simulation times t „ η´2

‚Finite time integration bias:
ˇ

ˇ

ˇ
E
´

pΦη,t

¯

´ αη

ˇ

ˇ

ˇ
ď

K

ηt

Bias due to t ă `8 is O

ˆ

1

ηt

˙

Ñ typically smaller than statistical error

‚Key equality for the proofs: introduce ´Lη
rRη “ R ´

ż

Rd

Rdνη

pΦη,t ´
1

η

ż

Rd

Rdνη “
rRηpXη

0 q ´ rRηpXη
t q

ηt
`

?
2

ηt
?
β

ż t

0
∇ rRηpXη

s q ¨ dWs
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More Ideas of Proof of Theorem

Denote by νη,∆t, and ν0,∆t the invariant measures of the respective
discrete marginal processes and let Πη,∆t and Π0,∆t be the operators that
center function with respect to these measures. Denote by P η,∆t and
P 0,∆ their Markov kernels.
The CLT from follows ergodicity, constructing an explicit solution to the
discrete Poisson equation

∆t´1
`

Id ´ T η,∆t
˘

upx, yq “ Πη,∆tRpxq ´ Π0,∆tRpyq,

and a CLT for Markov chains12. This further gives an expression for the
asymptotic variance, σ2

R,η,∆t in terms of the

pRη,∆t “ ∆t
`

Id ´ P η,∆t
˘´1

Πη,∆tR,

and
pR0,∆t “ ∆t

`

Id ´ P 0,∆t
˘´1

Π0,∆tR.

12R. Douc et. al (2018) Markov Chains
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Variance of Coupling Based Estimator

µη invariant measure of the coupled process. rRη and rR0 are solutions of

the Poisson equation Lη
rRη “ ΠηR and L0

rR0 “ Π0R. The asymptotic
variance is given by

rσ2
R,η “

2

η2

ż

RdˆRd

´

rRηpxq ´ rR0pyq

¯

pΠηRpxq ´ Π0Rpyqqµη pdx dyq

ď
2

η2

ˆ
ż

RdˆRd

´

rRηpxq ´ rR0pyq

¯2
µη pdx dyq

˙1{2

ˆ

ˆ
ż

RdˆRd

pΠηRpxq ´ Π0Rpyqq
2 µη pdx dyq

˙1{2

ż

RdˆRd

´

rRηpxq ´ rR0pyq

¯2
µη pdx dyq

ď 2

ż

RdˆRd

„

´

rRηpxq ´ rR0pxq

¯2
`

´

rR0pxq ´ rR0pyq

¯2
ȷ

µη pdx dyq
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Variance of Coupling Based Estimator in Discrete-time

µη,∆t invariant measure of the discrete-time coupled process. The
asymptotic variance can be bounded as

σ2
sticky,R,η,∆t ď

8

η2

ż

RdˆRd

´

pRη,∆tpxq ´ pR0,∆tpxq

¯2
µη,∆t pdx dyq

`
8

η2

ż

RdˆRd

´

pR0,∆tpxq ´ pR0,∆tpyq

¯2
µη,∆t pdx dyq .

Second integral can be controlled using our proposition on how much mass
µη,∆t puts off the diagonal. Adapting the strategy of Leimkuhler et al
(2015)13, we have

›

›

›

pRη,∆t ´ pR0,∆t

›

›

›

rVc

“ Opηq ` O
`

∆t2n
˘

13B. Leimkuhler, C. Matthews, and G. Stoltz The computation of averages from
equilibrium and non-equilibrium Langevin molecular dynamics
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More Ideas of Proof of Theorem

A long computation adapting the strategies of Leimkuhler, et. al (2015)14

and Plechac, et. al (2021)15 lets us bound the bias and variance with
terms of the form

ż

RdˆRd

pKnpxq ` Knpyqq1tx‰yu dµη,∆t pdx dyq ,

and higher order terms. (Recall Kn “ 1 ` |x|
n). It only remains to control

this integral.

14B. Leimkuhler, C. Matthews, and G. Stoltz The computation of averages from
equilibrium and non-equilibrium Langevin molecular dynamics

15P. Plechac, G. Stoltz, and T. Wang Convergence of the likelihood ratio method for
linear response of non-equilibrium stationary states
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